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Abstract—We formulate a generic framework for blind source
separation (BSS), which allows integrating data-driven spectro-
temporal methods, such as deep clustering and deep attractor
networks, with physically motivated probabilistic spatial methods,
such as complex angular central Gaussian mixture models. The
integrated model exploits the complementary strengths of the
two approaches to BSS: the strong modeling power of neural
networks, which, however, is based on supervised learning, and
the ease of unsupervised learning of the spatial mixture models
whose few parameters can be estimated on as little as a single
segment of a real mixture of speech. Experiments are carried
out on both artificially mixed speech as well as true recordings
of speech mixtures. The experiments verify that the integrated
models consistently outperform the individual components. We
further extend the models to cope with noisy, reverberant speech
and introduce a cross-domain teacher-student training where the
mixture model serves as the teacher to provide training targets
for the student neural network.

Index Terms—blind source separation, speech processing,
beamforming, deep clustering, neural networks, teacher-student.

I. INTRODUCTION

ACOUSTIC blind source separation (BSS) deals with
algorithmic solutions to extract the speech of each

concurrent speaker from an audio recording. The problem at
hand is often coined the Cocktail Party Problem [1] envisioning
people to discuss simultaneously in a fairly uncontrolled
setting in contrast to, e.g., telephone speech where close-
talk, low noise and no cross-talk conditions are common. In
recent years, a number of neural network-based blind source
separation systems emerged. This raises the question whether
statistical model-based clustering has still its justification in
modern systems. Therefore, we first revisit data-driven single-
channel source separation algorithms and then review statistical
model-based multi-channel approaches. Finally, we guide to
integration variants, which allow to use both modalities, permit
to incorporate prior knowledge, enable unsupervised training
and possibly provide more insight than the fearfully named
black box neural networks.

Over the years many conceptually quite different algorithmic
approaches to BSS emerged, which either focus on single-
channel observations mainly leveraging spectral cues such as
pitch and common onset times or – on the contrary – are
designed for multi-channel observations mainly leveraging
spatial cues such as phase and level differences between
the microphones but often neglecting temporal and spectral
correlation altogether.
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Shallow blind decomposition techniques for single channel
separation which do not use any kind of deep neural network
(DNN) have only led to limited success. Although Computa-
tional Auditory Scene Analysis can separate speech to some
degree, it relies on complicated hand-tuned grouping rules
(e.g., harmonicity or common onsets) which do not involve
any automated learning [2]. Non-negative matrix factorization
(NMF) is a well-studied approach to separate e.g. single
channel mixtures by using previously learned signal-dependent
dictionaries [3]–[5]. A quite different approach is to use
factorial hidden Markov models (HMMs) [6] such that the
temporal structure of each source is modeled with a speaker-
dependent HMM which led to promising results on a fairly
narrow automatic speech recognition (ASR) task [7]. An
overview of pre-DNN single-channel BSS with probabilistic
models can be found in [8].

Early deep neural network-based approaches demonstrated
much better separation performance but still relied on speaker-
dependent networks [9]–[12]. In contrast, deep clustering (DC)
broke with all these drawbacks and turned out to be a great step
forward towards single-channel speech separation [13], [14]: A
neural network is trained to learn embeddings from the time-
frequency representation of the signal, such that embeddings
belonging to the same source form clusters. This latent structure
can then be used to obtain masks by using, e.g., k-means
clustering. An attractive property of DC is the fact, that the
network is not fixed to a predefined number of speakers. In fact,
the network can be trained with two speakers and evaluated
on three speakers [13]. An interesting alternative to avoid the
speaker counting issue is to train a neural network to output
masks one by one [15]. Deep attractor networks (DANs) are
a notable variant of DC in the sense that they allow to train
with a signal reconstruction criterion while still creating a
latent representation for clustering [16]. Source Contrastive
Estimation modified the training recipe such that the clusters
in the latent space tend to be more compact [17]. Permutation
invariant training (PIT) is an alternative to DC and has proven
to be a successful tool to train a neural network to separate
a predefined number of target speakers [18]–[20]. In contrast
to DC it does not require an additional clustering step. In the
spirit of multi-task learning, it was demonstrated that a PIT
network can achieve remarkably better separation performance
when trained with an additional DC loss function [21].

While single-channel source separation relies on spectro-
temporal properties of the speech signal, multi-channel statisti-
cal model-based solutions exploit the spatial diversity of the
sources. Traditionally, multi-channel blind speech separation is
either tackled by independent component analysis (ICA) [22],
[23] or with statistical model-based clustering. In particular,
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Fig. 1. Block diagram of the entire framework including signal model and speech recognition back-end. The observed signal ytf or at least one channel of it
is available to the encoder (a module which encodes the input into a latent representation), the latent model and the decoder (a module which uses the latent
representation to extract the sources). Depending on the model choice, either the encoder can be omitted or the latent model does not make use of ytf .

spatial model-based approaches that exploit the sparseness of
speech in the short time Fourier transform (STFT) domain
have become very popular [24]–[31]. The majority of these
techniques treats each time-frequency bin as statistically
independent and neglects frequency dependencies. Carrying out
separation on each frequency separately leads to the frequency
permutation problem: Even if the source separation were perfect
for each frequency bin, it is likely, that component one of a
given frequency bin does not correspond to the same speaker
as component one of another frequency bin [32]. Notable
exceptions either apply a frequency normalization [33] or
estimate statistics which are shared across frequencies [34].
An extensive overview of multi-channel speech enhancement
and separation can be found in [35].

Although the spectral, as well as the spatial features, are
very informative for speech enhancement and separation tasks,
the number of systems integrating both modalities is limited.
Woodruff et al. integrate both modalities using CASA and
binaural clustering [36]. Nakatani et al. proposed DOLPHIN,
which integrates factorial spectral models with spatial clus-
tering [37]. Tran Vu et al. use 2D-HMMs to model temporal
and spectral dependencies while using a spatial observation
model to capture spatial cues [38]. In [10] spectral features
are modeled by an NMF, while spatial features are modeled
by a full rank covariance model. More recently, [39] proposed
the integration of a DNN-based mask estimator and a complex
angular central Gaussian mixture model (cACGMM) to extract
a single source. In [40] a DNN refines the source estimate
in each expectation maximization (EM) iteration. In [41] we
proposed modeling spectral features with a DC model and
spatial features with a time-variant complex Gaussian mixture
model (TV-cGMM). In [42] we presented a DAN+TV-cGMM.

Here, we extend prior work along several different dimen-
sions. First, we formulate the integration framework in a generic
sense as an encoder decoder structure. Second, we introduce the
von-Mises-Fisher complex angular central Gaussian mixture
model (vMF-cACGMM) and the Gaussian complex angular
central Gaussian mixture model (G-cACGMM). Third, we
expand it to noisy reverberant environments by introducing an
additional noise class both for the spectro-temporal encoder
as well as the probabilistic integration model. Forth, we
theoretically justify, why an integration weight [41] is now
obsolete. Fifth, we evaluate DC, DAN, and the integration
models for the first time on real recordings. Finally, in contrast
to [41] we employ a state of the art acoustic model (AM) to
ensure that gains in the front-end are not eaten up by a strong
back-end.

This work is organized as follows, where Fig. 1 can be seen
as a visual table of contents: The signal model, as well as
the assumptions underlying this work, are explained in Sec. II.
Sec. III introduces DC and DANs as particular examples of
neural network-based source separation techniques. Sec. III also
introduces the concept of encoder, latent model, and decoder
which will help to formalize the different approaches. Sec. IV
revisits probabilistic spatial models and the corresponding
solution in the form of update equations of an EM algorithm.
Sec. V introduces the integration framework by generalizing the
probabilistic spatial mixture models to handle an observation
model for each cue. Sec. VI briefly reviews source extraction
methods relevant for this work while Sec. VII consists of
a thorough evaluation of different aspects of the proposed
framework. Most notably, we evaluate unsupervised training
of DC, multi-channel features for the neural network encoder
and BSS, as well as ASR experiments on real recordings.

II. SIGNAL MODEL AND OBJECTIVE

A convolutive mixture in time domain captured by D sensors
is approximated by an instantaneous mixture in the STFT
domain, where sktf represents K independent source signals:

ytf =
∑
k

hkf sktf + ntf

=
∑
k

xktf + ntf , (1)

where ytf , hkf , ntf , and xktf are the D-dimensional complex-
valued observed signal vector, the complex-valued unknown
acoustic transfer function vector of source k ∈ {1, . . .K}, the
complex-valued noise vector, and the complex-valued source
images at the sensors, respectively. Furthermore, t ∈ {1, . . . T}
and f ∈ {1, . . . F} specify the time frame index and the
frequency bin index, respectively. This narrowband approxima-
tion ignores inter-frame and inter-band convolution effects [43].
Consequently, it is assumed that the impulse response is short
enough to approximately fit in a single frame. Since speech
signals are sparse in the STFT domain [25], [44], we may
assume that a time frequency slot is dominated by a single
source or occupied by noise only; i.e., we assume that the
sources are sufficiently disjoint in the STFT domain [25].

The goal of all methods presented subsequently is to obtain
an estimate x̂ktf for the speech image xktf , e.g., at a particular
reference microphone. Consequently, the focus is not on
dereverberation and not on obtaining and estimate for the
source signal sktf .
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III. NEURAL NETWORK-BASED SOURCE SEPARATION

In this section, we review neural network-based source
separation. In contrast to speaker-dependent source separation
neural networks, e.g., [12], we will here focus on more recent
developments, which provide methods to separate speakers,
which were never seen during training. Namely, we will
introduce DC and DANs and relate them to the vocabulary
commonly used in variational autoencoders [45].

A. Deep clustering

DC is a technique which aims to blindly separate unseen
speakers in a single-channel mixture. The training procedure
described in the original work [13], [14] assumes, that ideal
binary masks for each speaker are available to train a multi-layer
bidirectional long short term memory network (BLSTM) [46]
to map from T ·F spectral features (e.g., log-spectral amplitude)
to the same number of E-dimensional embedding vectors etf ,
where ‖etf‖ = 1. This network can be seen as an encoder such
that the embedding vectors are some kind of latent code. The
objective during training is to minimize the Frobenius norm of
the difference between the estimated and true affinity matrix:

` =
∥∥Â−A

∥∥2
F
=
∥∥EET −CCT

∥∥2
F
, (2)

where Â and A are the estimated and ground truth affinity
matrices (for a discussion of improved loss functions see [47]).
The entries An,n′ encode, whether observation n and n′ belong
to the same source (An,n′ = 1, and zero else; n indexes T ·F
rows/ columns). Correspondingly, the embeddings are stacked
in a single matrix E with shape (TF×E) and the ground truth
one-hot vectors describing which time frequency slot belongs
to which source are stacked in a single matrix C with shape
(TF × K), such that Cnk = 1, if observation n belongs to
source k and Cnk = 0 otherwise. During training, the loss as
defined in Eq. 2 encourages the network to move embeddings
belonging to the same source closer together while pushing
embeddings which belong to different sources further apart.

After training, the embeddings, which are normalized to unit-
length, can be clustered to obtain time frequency masks for each
source. This can be related to the latent probabilistic models
in structured variational autoencoders [48]. The original work
on DC used k-means clustering which then yields masks for a
subsequent source extraction scheme, e.g., masking (compare
Fig. 2). To again relate it to variational autoencoders, since this
source extraction uses the latent structure to predict signals in
the domain of the observation, it can be seen as some kind of
decoder structure. However, binary masks often lead to musical
tones harming ASR performance which can be reduced using
an additional DNN as a decoder neural network [14].

BLSTM k-means ×
y1tf etf γktf

y1tf
x̂ktf

Encoder Latent model Decoder

Fig. 2. Schematic view of a DC system with a masking decoder.

TABLE I
VIEWING DC AND RELATED METHODS AS A STRUCTURE WITH AN

ENCODER, A LATENT MODEL AND A DECODER. ALL ENTRIES REPRESENT
THE CONFIGURATION AT TEST TIME.

Reference Encoder Latent model Decoder

[13], [17], [49] BLSTM k-means Masking
[14] BLSTM weighted k-means BLSTM + Masking
[16], [50] BLSTM k-means DAN-Masking

B. Deep attractor networks

DANs [16] consist of an encoder just as the DC system.
However, during training, attractors µk are calculated similarly
to the M-step of an EM algorithm for Gaussian mixture models
(GMMs) by using the target mask M (oracle)

ktf as supervision in
a weighted mean:

µk =
∑
tf

M
(oracle)
ktf etf

/∑
tf

M
(oracle)
ktf . (3)

These can then be used to estimate a soft mask as an inner
product for signal reconstruction (DAN-Masking in Tbl. I):

γktf = softmax
k

(
µT
ketf

)
= eµ

T
ketf

/
K∑
k′=1

eµ
T
k′etf . (4)

First of all, this allows defining a loss function which includes
the mask and therefore avoids a surrogate loss function such as
in Eq. 2 and is faster to evaluate. In particular, a reconstruction
loss has proven to be successful when the application later
uses a DAN-Masking decoder for signal reconstruction:

`MSE = MSE
ktf

(x̂ktf , xktf ) , x̂ktf = γktf · y1tf , (5)

where MSE() is the mean squared difference of the arguments.

C. Extension with additional noise class

Most DC and DAN related papers so far do neither test in
noisy conditions nor do the models specifically account for a
noise class. For any more realistic scenario, background noise
will always be present and it is worth addressing it already
during training.

Four possible ways to train the network are then:
1) Treat the noise mask just like a speaker mask. The

network is then forced to produce K + 1 clusters at
arbitrary locations.

2) Provide a fixed attractor for the noise class. The speaker
clusters can move anywhere. The noise attractor is already
known at test time, so this avoids the problem to confuse
noise with any of the speakers.

3) Since it is unclear, how to set the fixed attractor, the
attractor can also be a trainable network parameter.

4) Alternatively, the network can be trained to output an
additional noise presence probability mask.

Preliminary experiments showed that treating the noise
mask just like an additional speaker works sufficiently well.
Therefore, we leave a detailed investigation of the other options
for future research.
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IV. PROBABILISTIC SPATIAL MIXTURE MODELS

This section focuses on probabilistic models to capture
spatial characteristics of multi-channel observations in the STFT
domain. Based on the assumption that speech is a sufficiently
sparse signal in the STFT domain [25], [44] one can model
the observations with a mixture model.

In its generic form, the distribution of the multi-channel
observations can be formulated as a marginalization over all
class labels with the assumption that all observations are
conditionally i.i.d.:

p(ytf ) =
∑
k

πkfp(ytf |θk), (6)

where πkf is the a-priori probability, that an observation
belongs to mixture component k, and p(ytf |θk) is any
appropriate class conditional distribution which can model ytf
and θk captures all class-dependent parameters. Independent
of the particular choice of the mixture weight and p(ytf |θk),
the class affiliation posterior is obtained as follows:

γktf = P (cktf=1|ytf ) =
πkfp(ytf |θk)∑
k′ πk′fp(ytf |θk′)

, (7)

where cktf represents the class affiliation of ytf .
One instance of this generic mixture model is a complex

Watson mixture model (cWMM) [28], [51], where the class
conditional distribution is a complex Watson distribution [52].
A full-band cWMM is analyzed in [53] and a variational
inference approach to cWMMs with complex Bingham priors
is proposed in [54]. The complex Bingham distribution [55]
can of course also be used as a class conditional distribution
yielding the complex Bingham mixture model [56]. Another
alternative is a complex Gaussian mixture model [29], of which
a variational approach is presented in [57].

All spatial clustering approaches mentioned in this section do
not rely on any pre-trained values or speaker-dependent code-
books. Each parameter can be estimated and each latent variable
inferred with an EM algorithm on a single mixture. Therefore,
these models may serve as a teacher for neural network-based
separation systems as discussed in Subsec. VII-F.

In the remainder of this section we will focus on a specific
example of a spatial mixture model and further introduce
issues related to initialization and frequency permutation often
encountered in STFT domain spatial clustering. Finally, we
mention specific model choices and highlight guided source
separation.

A. Complex Angular central Gaussian mixture model

The cACGMM [58] uses a complex Angular central Gaussian
distribution [59] as a class conditional distribution:

p(ỹtf |Bkf ) =
(D − 1)!

2πD detBkf

1

(ỹH
tfB

−1
kf ỹtf )

D
, (8)

where ỹtf = ytf/‖ytf‖. Due to this normalization, the model
can only capture intra-channel level differences but does not
account for the power of an observation. Additionally, it is
worth noting, that ỹH

tfB
−1
kf ỹtf is invariant of the absolute phase,

thus p(ỹtf ) = p(ỹtfe
jφ). Therefore, the model only captures

intra-channel phase differences, but not the absolute phase.

The parameters and therefore the distribution of the random
variables can be estimated using maximum likelihood. This
leads to an iterative solution, where the class affiliation posterior
γktf is updated during the E-step as in Eq. 7 and all remaining
parameters are updated during the M-step. It is worth noting,
that the update equations of the cACGMM coincide with
the update equations of the TV-cGMM [58] although the
probabilistic model (Fig. 3) is actually simpler.

We decided to use a cACGMM since it performed better
than all other tested mixture models in previous informal
experiments on the datasets used in Sec VII.

B. Frequency permutation problem

The aforementioned spatial mixture models neglect frequency
dependencies. Thus, when used without any kind of guidance,
it will yield a solution where the speaker index is inconsistent
over frequency bins. This issue is the so called frequency
permutation problem [32]. It can be addressed by calculating
that permutation alignment (PA) (bin by bin) which maximizes
the correlation of the masks along neighboring frequencies [32].

C. Initialization and influence of the mixture weight

Probabilistic spatial mixture models tend to be very sus-
ceptible to initialization. First of all, initializing the class
affiliation posteriors γktf i.i.d. is suboptimal, since this will
result in almost equal class-dependent model parameters after
the first M-step and will thus lead to slow convergence. A
better initialization is to randomly assign a few consecutive
frames exclusively to each of the classes, which alleviates the
frequency permutation problem to some degree and encourages
that the class-dependent parameters are initially more spread
out. A more elaborate initialization scheme is presented in [60].

It is a common choice to use frequency-dependent mixture
weights πkf in Eq. 7. However, other alternatives are also
possible: a constant mixture weight 1/K tends to lead to
clusters more evenly populated; a frequency-independent but
time-dependent mixture weight πkt is more rarely seen but has
the nice property, that it alleviates the permutation problem to
some degree and better represents noise-only segments [61].

D. Guided source separation

In case external information is available (see [62] for an
overview of guided source separation), probabilistic spatial
mixture models provide an easy and intuitive way to integrate
this information either as a prior or by fixing part of the
parameters during an update, e.g., a guided cACGMM [63]
uses this concept to fix the possible values of γktf to incorporate
external timing annotations for the CHiME 5 challenge [64].

πkf cktf ỹtf Bkf

Fig. 3. Probabilistic dependencies in a cACGMM. Circles depict random
variables, where doubly circled elements are observable random variables.
Boxes are model parameters which are estimated during test time. Arrows
indicate statistical dependencies, e.g., cktf is categorically distributed with
the mixture weights π1f , . . . πKf .
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V. INTEGRATION MODELS

An obvious drawback of the probabilistic spatial mixture
models described in Sec. IV is, that they do neither account
for temporal or spectral relations between the observations
nor do they include any information about the energy in a
time-frequency slot. Likewise, the single-channel approaches
in Sec. III do not access cross-channel information at all,
although phase differences and level differences have proven
to be important features.

Therefore, an interesting way to make use of both modalities
is to use an encoder network (trained according to, e.g., the
DC or DAN recipe) to produce spectral features which can
then be used in a statistical model which jointly characterizes
the distribution of both modalities. The generic formulation of
such an integrated probabilistic model assuming conditional
independence of both features is given as follows [41]:

p(ytf ) = p(etf , ỹtf )

=
∑
k

πktp(etf |θ(spectral)
k )p(ỹtf |θ(spatial)

k ), (9)

where, similar to Eq. 6, the parameter πkt is a time-dependent
mixture weight while θ(spectral)

k and θ(spatial)
k capture all class-

dependent spectral and spatial parameters.
It is now possible to derive an EM algorithm which jointly

estimates all unknown parameters and allows to infer the
a posteriori distribution of the latent class labels:

γktf =
πktp(etf |θ(spectral)

k )p(ỹtf |θ(spatial)
k )∑

k′ πk′tp(etf |θ
(spectral)
k′ )p(ỹtf |θ(spatial)

k′ )
. (10)

Fig. 4 contains an algorithm, outlining the entire separation
process. In the remaining part, we now describe two particular
instances of this generic model formulation in Eq. 9 and address
issues related to the choice of fixed parameters.

A. vMF complex angular central Gaussian mixture model

The vMF-cACGMM jointly models the embedding vectors
etf of a DC encoder and the normalized spatial observations
ỹtf = ytf/‖ytf‖. Since the DC embeddings are unit normal-
ized, a distribution defined on the surface of a unit-sphere is
a suitable choice. Therefore, the vMF-cACGMM makes use
of a von-Mises-Fisher (vMF) distribution [65] as a spectral
observation model p(etf |θ(spectral)

k ) with the normalization term
here represented by cvMF(κk):

p(etf |µk, κk) =
1

cvMF(κk)
eκkµ

T
ketf , (11)

while the spatial observation model is a cACGMM. All
statistical dependencies are visualized in Fig. 5.

It is worth contrasting the spectral observation model to
the proposed approach in [13]. In [13] a k-means is used for
clustering which can be seen as a GMM with shared scaled
identity covariance matrices and a binary decision in the E-step.
Here, we avoid this binary decision and use a vMF distribution.
However, when compared in [41], the choice of the exact
spectral observation model was not crucial.

1: Calculate DC/DAN embeddings etf .
2: Initialize affiliations γktf with k-means clustering on etf .
3: while not converged do
4: M-step: Update class conditional parameters.
5: E-step: Obtain masks γktf with Eq. 10.
6: end while
7: Run source extraction (Sec. VI).

Fig. 4. Source separation algorithm for the generic integration framework.

B. Gaussian complex angular central Gaussian mixture model

The embeddings calculated by a DAN encoder are not
normalized to unit norm. Consequently, the vMF distribution
is inappropriate as an observation model for the embedding
vectors. Therefore, we resort to a Gaussian distribution as a
spectral observation model, i.e. replacing p(etf |θ(spectral)

k ):

p(etf |µk,Σk) =
1√

det(2πΣk)
e−

1
2 (etf−µk)

TΣ−1
k (etf−µk).

(12)

Again, without restricting the framework in general, a
cACGMM can be used as a spatial observation model.

C. Estimated vs. fixed parameters

In the vMF-cACGMM and the G-cACGMM all parameters
can be estimated on the current mixture. An alternative is
to fix, e.g., the concentration parameter κk := κ(fix) or even
to constrain the covariance matrix of the spectral model of
a G-cACGMM to a scaled identity matrix Σk := σ(fix)IE ,
where E is number of embedding dimensions. Using a fixed
parameter has the advantage, to choose the parameter such that
an additional weighting factor as used in [41] (similar to a
language model weight in acoustic modeling) is not necessary
anymore. The spectral weight can be factored into, e.g., the
concentration parameter:(
p(etf |µk, κk)

)α∝ eακkµ
T
ketf = eκ

′
kµ

T
ketf with κ′k = ακk.

This parameter can then be obtained on a separate develop-
ment set (see Subsec. VII-D for details). Additionally, choosing
a scaled identity matrix σ(fix)IE instead of a full covariance
model in a G-cACGMM has the advantage, that it is a bit closer
to the training conditions in which all embedding dimensions
were treated equally.

πkf

cktfetfκk

µk

ỹtf Bkf

Spectral observation model Spatial observation model

Fig. 5. Probabilistic dependencies in a vMF-cACGMM. Circles depict random
variables, where doubly circled elements are observable random variables.
Boxes are model parameters which are estimated during test time. Arrows
indicate statistical dependencies, e.g., cktf is categorically distributed with
the mixture weights π1f , . . . πKf .
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VI. SOURCE EXTRACTION

This section details, how the clustering result of any of the
aforementioned methods can be used to actually extract the
sources. To remain in the variational autoencoder vocabulary,
this processing step corresponds to the decoder.

One obvious choice is to use the class affiliation posterior
γktf (i.e. mask) to directly mask the observation:

x̂ktf = γktf · y1tf , (13)

where y1tf is either an arbitrary reference channel or, in
case of single-channel source separation, the only available
channel. This is a common choice especially for single-channel
approaches (see Tbl. I). When the masks are trained with some
kind of reconstruction loss, it can lead to great interference
suppression (see, e.g., [66] for a comparison). However, this
may lead to musical tones, e.g. when the masks obtained with
k-means are used directly.

An alternative is to use mask-based beamforming. This
approach is common practice when dealing with multi-channel
mixture models and has more recently become an even more
competitive approach for multi-channel noise reduction when
the masks are estimated with a neural network [67], [68].

For beamforming, we first calculate covariance matrices for
each target speaker using the posterior masks γktf :

Φ
(target)
kf =

∑
t

γktfytfy
H
tf

/∑
t

γktf . (14)

Similarly, the covariance matrix of all interferences and
noise is calculated with (1− γktf ) instead of γktf . Once
the beamforming vector wkf is obtained according to, e.g.,
Subsec. VI-A below, a linear projection of the observation
STFT vector ytf yields the estimate:

x̂ktf = wH
kfytf . (15)

A combination of beamforming with a subsequent masking
step as a single-channel postfilter is rather obvious, but will
not be addressed further in this work.

In the remainder of this section we briefly introduce the
statistical beamformers which found application in this work.

A. Minimum variance distortionless response beamformer

In its original form, the minimum variance distortionless
response (MVDR) beamformer is designed to minimize the
expected output variance while avoiding distortions given a
fixed steering vector [69], [70]. Since we intend to use masks
from the previous processing step, a formulation which does not
require explicit knowledge of the steering vector is preferred.
We therefore use the formulation by Souden et al. [71, Eq. 24]
with a blind approach to estimate a reference channel [68].

B. Generalized eigenvalue beamformer/ MaxSNR beamformer

A Generalized eigenvalue (GEV) beamformer [72] or also
called maximum SNR (MaxSNR) beamformer [73] maximizes
the expected signal to noise ratio (SNR) gain for a given
target k at the beamformer output. Since GEV beamforming
is known to introduce some frequency-dependent distortions, a
blind analytic normalization (BAN) can optionally be used [72].

VII. EXPERIMENTAL EVALUATION

To thoroughly evaluate the proposed integration framework,
we evaluate on artificial mixtures as well as on real mixture
recordings. To get a good impression of the system performance,
we present results in terms of BSS-Eval signal to distortion
ratio (SDR) gain [74], invasively calculated SDR gain [28],
PESQ gain [75], STOI gain [76] and finally word error rates
(WERs). We report invasively calculated SDR gains, since
these do not rely on any projection method and cannot be
fooled by scaling effects.

This section first introduces both databases and then focuses
on a detailed analysis of the integration approach on the
simulated databases. We subsequently highlight, how a spatial
mixture model can be a sufficient supervision for a DC network.
Finally, we compare the integration methods with multi-channel
DC on the simulated database and on real recordings.

A. Database design

For the simulated database, we artificially generated 30 000,
500 and 1500 six-channel mixtures with a sampling rate of
8 kHz with source signals obtained from three non-overlapping
Wall Street Journal (WSJ) sets (train: si284, develop: dev93,
test: eval92) [77], [78]. We padded or cut the second speaker
to match the length of the first speaker. Room impulse responses
were generated with the Image Method [79], where the room
dimensions, the position of the circular array with radius 10 cm
and the position of two concurring speakers were randomly
sampled. The minimum angular distance was set to 15◦. The
reverberation time (T60) was uniformly sampled between 200
and 500ms. White Gaussian noise with 20 to 30 dB SNR was
added to the mixture. We here deviated from the file lists
provided by [13] since the speakers of their training set and
development set overlap and although their training set consists
of 20 000 mixtures it only includes 6842 unique utterances from
si84 which turned out to be insufficient when training an
acoustic model on that list.

Real recordings were taken from the multi-channel WSJ
audio visual corpus [80]. Specifically, we used 8 channels
of array 1 of the olap_dev_5k dataset (178 mixtures) for
development and the olap_ev1_5k (142 mixtures) for test.
No training set was available. To evaluate objective performance
gains, we used the fairly clean headset signal. It is worth
mentioning, that the recorded speech stems from British English
speakers in contrast to our simulated database.

B. Separation neural network topology and training

The DC networks and DANs in this work all consist of
two BLSTM layers with 600 forward and 600 backward units
and a final linear layer mapping to embeddings with E = 20
dimensions. The forward and back streams of the BLSTM
are concatenated before entering the next layer. All layers
contain a sequence normalization and use dropout with a ratio
of 0.5 during training. The DC networks employ a unit-norm
normalization on the embeddings, while the DAN uses a tanh
non-linearity on its embedding output. We train each network
for 200 000 steps where each step consumes a mini-batch of 4
mixtures with ADAM [81].
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TABLE II
COMPARISON OF DIFFERENT ENCODER VARIANTS FOR A FIXED DECODER ON THE SIMULATED DATABASE. BASELINE SYSTEMS ARE SET IN GRAY.

Encoder Latent model Weight Parameter Decoder SDR gain / dB PESQ STOI WER / %

BSS-Eval Invasive gain gain Clean Image

1 cACGMM πkf MVDR 5.1 12.7 0.37 0.09 40.9 28.2

2 DC(K′=K) k-means 1/K′ MVDR 5.8 14.0 0.45 0.12 45.8 27.9

3 DC(K′=K+1) k-means 1/K′ MVDR 6.0 14.3 0.48 0.12 42.5 26.6

4 DC(K′=K+1) vMF-cACGMM πkt κ(fix) = 5 MVDR 6.8 16.5 0.60 0.15 33.4 18.9

5 DAN(K′=K) k-means 1/K′ MVDR 6.4 15.3 0.52 0.13 41.9 23.7

6 DAN(K′=K+1) k-means 1/K′ MVDR 5.8 14.0 0.46 0.11 44.9 28.1

7 DAN(K′=K) G-cACGMM πkt σ(fix) = 0.6 MVDR 6.8 16.4 0.59 0.14 35.8 19.9

8 DAN(K′=K+1) G-cACGMM πkt σ(fix) = 0.2 MVDR 5.9 14.6 0.49 0.11 42.1 26.4

9 Oracle 31.1 10.7

C. Acoustic model training

The hybrid AM consists of a combination of a Wide Residual
Network to model local context and a BLSTM to model long
term dependencies. The AM is thus dubbed wide bi-directional
residual network (WBRN) [82]. The choice fell to a WBRN
since it is considered state of the art on the single-channel track
with baseline RNNLM rescoring during the CHiME 4 challenge.
We train different acoustic models. The clean AM is trained
directly on WSJ utterances with alignments extracted with a
vanilla DNN-HMM recipe from Kaldi [83]. The image AM
is trained on artificially reverberated WSJ utterances without
any interfering speaker or noise. To obtain reliable alignments,
we extracted these on the same utterances reverberated with
a truncated room impulse response. Thus, both AMs never
saw mixed speech and never saw possible artifacts produced
by any kind of separation system. Therefore, we train a third
AM (here named match) directly on the separation results
of each algorithm of interest. Although warm-starting with a
pre-trained AM is possible in this context, we trained each
model from scratch without any significant degradation. For
decoding we use the trigram language model delivered with
the WSJ database without additional rescoring. All WERs are
evaluated for one of the two speakers.

D. Analysis of integration methods

The BSS algorithms operate on an STFT with a discrete
Fourier transform (DFT) size of 512 and a shift of 128. The
AM uses 40 Mel filterbank features extracted with a DFT size
of 256, a window size of 200 and a shift of 80.

Tbl. II compares different encoders on the simulated database
with MVDR beamforming as a decoder. The first row shows the
cACGMM result, which is entirely unsupervised. In contrast,
row 2 and 5 show the vanilla DC and DAN systems both trained
without an additional noise class where the DAN results in
better WERs. The first step is now to introduce an additional
noise class (row 3 and 6). This improves the DC result but
severely harms the DAN performance. Therefore, we use the
additional noise class only together with the DC system from
now on. The best WERs with both the clean as well as the
image AM are obtained with the DC encoder and a vMF-
cACGMM latent model with additional noise class. Just as

in [61], we used a time-variant mixture weight πkt for all
integration variants. The oracle results in Tbl. II are speech
recognition results directly on the reverberated speech without
interference or noise. It can be observed that the best PESQ
and STOI scores are obtained with the vMF-cACGMM which
leads to the conclusion that the integration is helpful both for
ASR as well as speech enhancement.

The integration results in Tbl. II are obtained with a fixed
concentration parameter for the vMF-cACGMM and a fixed
scale parameter for the G-cACGMM. These values can be
obtained on the development set as visualized in Fig. 6. It can
be observed that the maxima in terms of invasive SDR gains
coincide on the development and on the test set. The symbols
on the right border indicate the development set performance
when the parameter is estimated on the speech mixture. It can
be observed that in almost all cases this is much worse than
fixing the parameter using the development set.

E. Comparison of different decoders

It is often discussed which decoder variant is most suit-
able for speech recognition. Therefore, we compare different
decoders in Tbl. III with a fixed DC encoder and a vMF-
cACGMM latent model. It can be observed that the best BSS-
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Fig. 6. Invasive SDR gain for different integration models and different
parameter choices. Results on the development set are dashed while test results
are solid lines. The symbols at the right border indicate development set results
when κ or σ is estimated on each speech mixture instead of fixed.
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TABLE III
COMPARISON OF DIFFERENT DECODER (SOURCE EXTRACTION) VARIANTS
FOR A FIXED ENCODER AND LATENT MODEL: EACH VARIANT USES DC AS

AN ENCODER AND A VMF-CACGMM AS A LATENT MODEL.

Decoder SDR gain / dB PESQ STOI WER / %

BSS-Eval Invasive gain gain Clean Image Match

Masking 10.6 14.2 0.47 0.19 62.9 39.5 18.6

GEV 4.5 14.6 0.60 0.11 39.9 21.6 14.7

GEV+BAN 7.4 16.0 0.57 0.14 34.3 18.5 15.4

MVDR 6.8 16.5 0.60 0.15 33.4 18.9 13.9

Oracle 31.1 10.7 10.7

Eval SDR gains are obtained using masking. However, the
beamforming variants yield higher invasive SDR gains, higher
perceptual gains (PESQ, STOI) and better word error rates with
all three acoustic models. Nevertheless, it is worth noting that
the masking decoder profits most from retraining a matched
AM. Using the MVDR formulation as proposed by Souden et
al. [71, Eq. 24] the proposed integration with a vMF-cACGMM
yields a WER of 13.9%, which is not much higher than the
WER of a matched AM on oracle images with 10.7%.

F. Unsupervised training for deep clustering

In many circumstances, artificial mixtures are not available or
are not close enough to real recordings. It is therefore desirable
to train, e.g., a DC neural network without external supervision.
Probabilistic spatial mixture models have the advantage, that
they can infer masks on a mixture without any training data.
Therefore, it is a valid question, if an encoder such as DC can
be trained without parallel data or oracle masks.

To do so, we first infer class affiliation posteriors (masks)
with a cACGMM on a given mixture. Then, we apply a
permutation alignment step (compare Subsec. IV-B) to obtain
masks, which can be used for the affinity loss in Eq. 2. This
can be seen as some kind of teacher-student training. Zhou
and Qian suggested a similar scheme with complex Gaussian
mixture model on multi-channel mixtures to fine-tune a (single-
speaker) mask estimator [84].

Fig. 7 (left) nicely illustrates that the predicted posteriors
(masks) from the spatial mixture model are rather rough
and speckled. Furthermore, the predicted masks often contain

TABLE IV
COMPARISON OF DEEP CLUSTERING WITH SUPERVISION (DC) AND

WITHOUT SUPERVISION (U-DC), WHERE THE CACGMM REPRESENTED IN
THE FIRST ROW WAS USED AS A TEACHER FOR ROW 2 AND 3 INSTEAD OF

IDEAL MASKS. BASELINE SYSTEMS ARE SET IN GRAY.

Encoder Latent SDR gain / dB PESQ STOI WER / %

model BSS-Eval Invasive gain gain Clean Image

cACGMM 5.1 12.7 0.37 0.09 40.9 28.2

U-DC k-means 5.7 13.6 0.43 0.11 41.7 29.1

U-DC cACGMM 6.4 15.3 0.52 0.13 33.1 20.4

DC k-means 6.0 14.3 0.48 0.12 42.5 26.6

DC cACGMM 6.1 14.9 0.50 0.12 34.4 21.6
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Fig. 7. Intermediate masks generated by the cACGMM (left) guide the neural
network training which results in k-means clustering result with less artifacts
(right). Especially the lower frequencies are resolved better.

frequency permutation errors, when the permutation alignment
step did not resolve all permutations. Tbl. IV compares the
performance of an encoder trained with supervision (DC) with
the corresponding training without supervision (U-DC) by
using the cACGMM as a trainer. The student initializing the
cACGMM (row 3) beats the teacher (row 1) by 28% relative
WER and significantly improves SDR, PESQ and STOI gains.
It can be deduced that indeed the DC encoder can be trained
without parallel data, which is also illustrated by a mask
produced by the student in Fig. 7 (right). Additionally, even
if parallel data is partially available, using this approach to
fine-tune on real recordings can be a viable option.

G. Encoders with spatial features

It is of course possible to supply additional spatial features
to the encoder network (here named spatial encoders) such
that the neural network figures out spatial diversity by itself.
For example, [49] additionally used the sine and cosine of
inter-channel phase differences. Therefore, Tbl. V compares
integration methods (row 1 and 2) with DC/DAN using spatial
features as in [49] (row 3 and 4) and finally with integration
methods which use a spatial encoder (row 5 and 6). Again, the
fixed parameters are obtained on the development set.

First of all, it can be observed that the integration methods
and DC/DAN using spatial features without integration do not
differ greatly in terms of all reported measures. Although the
integration methods already yield slightly higher invasive SDR
gains, it is still beneficial to use an encoder with additional
spatial features (row 5 and 6). To name an example, the Spatial-
DC encoder with vMF-cACGMM yields a 3.7% relative WER
improvement over the Spatial-DC encoder with k-means. The
perceptual gains (PESQ, STOI) are fairly similar with slight
improvements by integrating a spatial encoder.

H. Evaluation on real recordings

To evaluate how the systems trained on artificial mixtures
generalize to unseen real recordings and an entirely different
microphone array geometry Tbl. VI compares separation results
in terms of BSS-Eval SDR gain, PESQ gain and STOI gain
measured against the headset microphone of the multi-channel
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TABLE V
COMPARISON OF DIFFERENT INTEGRATION MODELS WITH A SINGLE-CHANNEL ENCODER VS. MODELS WITH A MULTI-CHANNEL ENCODER.

THE MULTI-CHANNEL ENCODERS USE SINE AND COSINE OF INTER-CHANNEL PHASE DIFFERENCES AS SPATIAL FEATURES AS IN [49].

Encoder Latent model Weight Parameter Decoder SDR gain / dB PESQ STOI WER / %

BSS-Eval Invasive gain gain Clean Image

1 DC(K′=K+1) vMF-cACGMM πkt κ(fix) = 5 MVDR 6.8 16.5 0.60 0.15 33.4 18.9

2 DAN(K′=K) G-cACGMM πkt σ(fix) = 0.6 MVDR 6.8 16.4 0.59 0.14 35.8 19.9

3 Spatial-DC(K′=K+1) k-means MVDR 6.7 16.2 0.59 0.15 34.5 18.7

4 Spatial-DAN(K′=K) k-means MVDR 6.9 16.3 0.60 0.15 36.1 19.9

5 Spatial-DC(K′=K+1) vMF-cACGMM πkt κ(fix) = 5 MVDR 6.9 16.8 0.62 0.16 32.7 18.0

6 Spatial-DAN(K′=K) G-cACGMM πkt σ(fix) = 2.5 MVDR 6.9 16.8 0.62 0.15 33.5 18.8

7 Oracle 31.1 10.7

WSJ audio visual corpus. The headset microphone is not an
optimal reference but may serve here as a proxy. Invasive SDR
gains are unavailable on real recordings since the calculation
requires oracle source images and noise images. One potential
reason why the WERs are substantially worse than the previous
results is the mismatch between an American English AM
and British English observations. They can therefore only be
compared relative to each other.

First of all the cACGMM does not suffer from any training
mismatch because it estimates all parameters ad-hoc on the
current mixture. The single-channel DC here performs worse
than the cACGMM. If we compare this to row 1 and 2 in
Tbl. II, we may conclude that the single-channel DC indeed has
mismatch issues. This mismatch is very well compensated when
using the integrated vMF-cACGMM with the single-channel
DC encoder (row 3).

However, it turns out that the encoder with spatial features
generalizes surprisingly well to the unseen microphone geome-
try (row 4). The DC encoder with k-means clustering performs
just as well as the integrated approach with a single-channel
encoder (row 3). Nevertheless, the best results both in terms
of reported signal level measures as well as WER are obtained
using an integrated vMF-cACGMM with a spatial encoder.

VIII. CONCLUSIONS

In this work, we presented an integrated approach to blind
source separation combining neural network-based methods (i.e.
deep clustering and deep attractor networks) with probabilistic
spatial mixture models. The integration was achieved by defin-
ing a mixture model with two kinds of observation distributions,
one corresponding to the embedding vectors obtained by the
neural network and one for the vector of microphone signals,
while both modalities share the same latent class affiliation
variable. Our key findings from our experimental evaluation
are (a) the integration model consistently outperforms the
individual components, (b) the integration model, but also
a neural network-based separation method with spatial features,
are fairly robust to microphone mismatch even when evaluating
on real recordings, (c) a student neural network trained with
supervision from an unsupervised spatial mixture model is able
to separate speech and outperform the teacher.

TABLE VI
EVALUATION ON REAL RECORDINGS TAKEN FROM THE MULTI-CHANNEL
WSJ DATABASE WITH BRITISH ENGLISH. GAINS ARE MEASURED WITH

RESPECT TO HEADSET MICROPHONE. ALL SYSTEMS HAVE A NOISE CLASS
AND EXTRACT THE SOURCES WITH MVDR BEAMFORMING.

Encoder Latent SDR gain / dB PESQ STOI WER / %

model BSS-Eval gain gain Clean Image

cACGMM 6.9 0.41 0.15 54.3 49.7

DC k-means 6.3 0.32 0.13 67.1 58.6

DC vMF-cACGMM 8.5 0.55 0.20 43.8 41.8

Spatial-DC k-means 8.7 0.54 0.20 48.3 41.8

Spatial-DC vMF-cACGMM 9.0 0.58 0.21 43.0 39.7
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APPENDIX
REPRODUCABILITY INSTRUCTIONS

To be able to reproduce the results of our implementation
of the probabilistic spatial models including models not ana-
lyzed here can be found at https://github.com/fgnt/
pb_bss. The code also includes a permutation alignment
algorithm. The room impulse responses can be generated
with the implementation found at https://github.com/
ehabets/RIR-Generator. A Python implementation of
the BSS-Eval SDR performance measure [74] is available at
https://github.com/craffel/mir_eval. The file
lists for the simulated database as well as the TensorFlow
code for the DC and DAN training are available upon request.
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